{一}、液壓提升設備的組成要點
橋梁液壓提升系統是整個橋提升的核心部分,目前,國內采用的大都為PLC系統,PLC控制液壓同步系統由PLC液壓整體同步控制系統(油泵、油缸等)、監測傳感器、計算機控制系統等幾個部分組成。
1、監控傳感系統
監測傳感系統在整個提升系統中重要,是我們獲得數據信息的主要來源。液壓提升機械提升中主要涉及的監控設備有提升力監控系統(主要通過油壓表系統來呈現)、應力監控系統(主要通過應力傳感器來呈現)以及位移監控系統(主要通過位移傳感器來呈現)。
2、PLC液壓整體同步提升控制系統
PLC液壓整體同步提升控制系統的工作原理是:PLC液壓控制室按照預先編制的控制程序輸入液壓、位移指令給液壓泵站和位移監控系統,液壓泵站接受指令后,輸送相應的液壓給液壓千斤頂,千斤頂根據液壓值和頂力會產生相應的位移;位移監控系統根據各千斤頂的位移情況,及時反饋給PLC液壓控制室,控制軟件程序將根據位移反饋信息及時修整液壓、位移指令,通過反復調控形成力與位移的閉環,使各個千斤頂的位移在每個循環內的系統誤差控制在2ram以內。
3、計算機系統
計算機系統核心控制裝置,采用按鈕方式操作,并通過觸摸屏呈現各個提升油缸的受力參數,還可連接打印機,記錄提升過程數據。系統安了UPS電源,即使意外斷電,也可確定數據和工程的。計算機系統是整個PLC系統的核心,他把由監測傳感系統所收集到的數據進行分析處理,并把處理后的數據反饋給液壓系統,由液壓系統調節各千斤頂油壓,從而確定整個項升系統的同步性。
{二}、液壓提升機運行控制存在的技術問題
目前液壓頂升機械雖然在降低能耗與噪聲、控制漏油污染、提高運行工作效率和工作性等方面,已有不少研究成果推廣與應用,了提升機的發展,但在實際生產中,因為液壓提升機存在的一些難以克服的原理性問題,對液壓提升機的使用和煤礦的生產仍有較大的威脅,其主要表現在以下幾個方面:
(1)變量泵控定量液壓馬達的容積式調速回路可控性差
壓提升機采用的是變量泵控定量液壓馬達的容積式調速回路,導致液壓提升機的可控性差,平層精度很低,沖擊振蕩顯著,提升效率低。
液壓提升器這種調速方式是開環控制,馬達的輸出轉速依靠系統的調節精度控制,無轉速反饋。但因為在整個液壓伺服控制系統中,諸如減壓式比例閥和比例油缸等控制元件都存在較大的死區等非線性因素,液壓泵、馬達的容積效率也隨系統的壓力、油液粘度及溫度等的變化而變化,加之液壓油的可壓縮性、管路的彈性、液壓元件的泄漏等因素,從而使輸入液壓馬達的流量不穩定,因此液壓馬達的輸出動態參數根本難以準控制;提升機的啟動、加速、勻速和減速停車等不同階段的控制只能僅憑司機手動操作控制,許多隱患也由此而生,如液壓提升機的平層精度很低,難以滿足規定的誤差值(±50mm),提升容器的累積誤差較大,并且要靠司機一次或多次微動操作才能使提升容器達到規定停靠位置,嚴重影響了提升效率。
(2)液壓頂升設備的液壓驅動回路與制動回路的動作存在協同性問題
在液壓提升機加速起動、減速停車的瞬間,司機操作減壓式比例閥向液壓驅動系統與制動系統同時發出控制信號,驅動系統液壓馬達輸出轉速與輸出扭矩逐漸動態地建立,同時液壓制動系統松閘或抱閘制動,兩者協同配合實現負載的升降。但因為液壓驅動系統為泵控馬達系統,而制動系統為閥控缸系統,相比之下,前者的響應速度慢很多,雖然在液壓制動系統中設置有節流閥以調節制動、松閘時間,但因負載、油溫等因素的影響,液壓驅動系統扭矩、轉速建立或降低時間均是個變量,從而引起常見的“上坡起動負載瞬時下滑”與停車時系統壓力沖擊現象,嚴重失控時往往對煤礦斜井人員的運輸、井下作業人員的生命及生產造成嚴重威脅,甚至引起巨大的經濟損失。
系統具有的制動是制動,沒有二級制動,只是在系統停車和緊急停車時制動滾筒,不參與系統的調速,但系統在運行過程中,尤其在停車段,巷道的傾角會發生變化,提升機容器的運行速度僅靠司機人工控制,容易造成了停車松繩現象,影響系統的運行。
(3)液壓提升機的自動化水平低,主要依靠人工操作和監控,效率低,性差液壓提升機的控制主要依靠操作人員來監控指示器和運行速度值,手動操作減壓式比例控制閥,向液壓泵輸入液壓控制信號,從而改變泵輸出及輸入液壓馬達的液壓油流量和它的輸出轉速,實現對提升容器的位置控制。這種操作方式自動化水平低,因為司機手工操作存在的隨意性、和操作速度的不可重復性,影響提升機的準確平穩運行。液壓提升裝置元件故障分解:
1、動力元件供給的壓力不夠;
2、執行元件泄漏過大;
3、控制元件(壓力控制閥)調節失靈;
4、油量不良,造成系統吸空(吸空會有泡沫)
5、油太臟,把某個閥給卡住了等等具我們分解液壓設備的不足之一就是假設有故障,原因不易查找,只因液壓泵傳動的工作介質是液壓油,液壓油我們該做的好泄漏,馬上判斷是哪里泄漏。尋常原則還是由表及里、有簡到繁、按系分段、檢查推理。