【一】、大型構件液壓同步提升特點
(1)提升點多,大型構件具有重量超重、面積大等特點。液壓提升裝置采用地面組裝、整體提升時,由于單臺提升液壓缸提升力有限,因此通常需要數十臺提升液壓缸共同進行提升,即需要多個提升點同時工作。例如,鋼結構整體提升重量約為10388t,面積12300m2,共使用了67個提升液壓缸;
(2)同步要求高,在提升過程中要嚴格控制吊點之間的位移偏差,以避免結構變形過大、附加載荷過大等。同時,各吊點的載荷要控制在與理論計算基本一致的范圍內,避免構件局部受力過大甚至破壞;
(3)吊點提升力差異較大,大型構件同步提升時,需要設置多個吊點,吊點之間提升力大小差異很大,提高了同步控制的難度。
20世紀初液壓千斤頂出現之后,液壓技術已經在理論上可以直接應用到吊裝工程中,但開始的時候因為千斤頂起重高度低,應用受到了較大限制。直到1970年代高壓技術逐漸成熟,材料、電子、計算機、控制論等學科充分發展,液壓同步提升技術出現后,液壓技術自身在吊裝工程中的潛力才開始發揮出來。
國內的液壓同步提升技術發源于同濟大學。1990年代初,同濟大學承擔了上海石洞口二電廠600MW超臨界汽輪發電機組的鋼內筒煙囪的頂升工程,該煙囪總重600t,高240m,在國內開創了大型構件液壓同步頂升的先河,為后繼液壓同步提升技術作好了理論和實踐準備。1995年同濟大學用柔性鋼絞線承重,用自行研制的液壓提升,將上海東方明珠的鋼天線桅桿從地面沿鋼絞線爬升到350m高度后整體安裝,該天線重450t,長135m,這是液壓同步提升技術在國內大型構件吊裝的次應用,取得了巨大的經濟效益和社會影響力,此后采用液壓提升施工的工程如雨后春筍般地出現。
【二】、液壓提升設備基本設計
國內對鋼筋混凝土煙囪施工技術主要有液壓滑模、電動升模、滑框倒模3種施工工藝。對這兩種工藝有了深刻認識,并進行認真總結;通過對比和分析發現造成兩種工藝技術性能差異的主要原因在于:
1)體系結構支承方式不同,滑模支承在己埋入混凝土中的支承桿上,而升模結構支承在己凝固混凝土上,兩者對混凝土強度有要求,但前者要求低,后者要求混凝土,因而決定了施工的性強度和施工慢。
2)液壓頂升裝置在提升過程中模板與混凝土是否接觸:滑模工藝中內外模與混凝土夾持,在提升過程中,存在摩擦力,且混凝土處在初凝狀態,所以混凝土易被拉裂,施工質量難以;而升模工藝在提升過程中,模板與混凝土是脫離的,故混凝土凝固成型不受任何影響,混凝土施工質量好。
3)提升機構的不同:滑模工藝中采用液壓油泵和千斤頂,操作簡便、故障率低;升模工藝中采用絲桿傳動,施工環境差、故障率高、勞動強度大。
述兩種施工技術各有千秋,均有不足,因此有對兩種施工工藝改進,在充分吸收兩者優點的基礎上,一種煙囪施工新工藝—液壓提升翻模施工技術。
1、基本設計思想
1)為混凝土質量,工藝體系提升結構與模板相脫離,提升結構采用一次提升到位,一次性澆注混凝土,混凝土在靜態下凝固并進行養護,待強度增長到脫模時,再脫開模板并進入第三個循環施工。
2)為了便于綁扎鋼筋,模板支模和拆除,在筒壁內外設立內外操作架。
3)支承方式:采用滑模工藝中以支承桿為著力點來支承整個工藝體系結構,但該工藝中采用φ48X3.5mmQ235鋼管作為支承桿,提升時混凝土強度比滑模施工出模,因此支承桿承載能力比滑模施工要高數倍,此外,由于提升結構與模板系統相脫離,不存在摩擦力,因此液壓頂升提升荷載減小,故工藝體系施工可以充分,比滑模工藝提高。
4)提升機構:采用大噸位千斤頂和油泵,工作,操作方便。
5)模板系統:采用三層模板通過對拉螺栓和圍圈自成單獨體系,提升時模板系統與提升結構部分相脫離固定不動。
6)在煙囪內操作架下部設砌磚平臺,使內襯結構與筒壁同步施工,可縮短煙囪施工總工期。
7)利用操作平臺上小把桿和外操作架,可同步安裝煙囪爬梯和信號平臺。